MagnaPulse

Extensive documentation on the use of PEMF - (Pulsed ElectroMagnetic Frequencies)

Smith TL, Wong-Gibbons D, Maultsby J.
Microcirculatory effects of pulsed electromagnetic fields.

[The efficacy of pulsed electromagnetic fields used alone in the treatment of femoral head osteonecrosis: a report of two cases][Article in Turkish]
Seber S, Omeroglu H, Cetinkanat H, Kose N.
Department of Orthopedics and Traumatology (Ortopedi ve Travmatoloji Anabilim Dali), Medicine Faculty of Osmangazi University, Eskisehir, Turkey.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function.
Department of Physiology, University of Siena, Siena, Italy.

Wien Med Wochenschr 2003;153(3-4):65-72
PEMF may improve fatigue associated with multiple sclerosis.
Zifko UA.
Sonderkrankenanstalt fur Neurologie, Klinik Pirawarth, Kurhausstrasse 100, A-2222 Bad Pirawarth.
There is evidence, that pulsing electromagnetic fields may improve fatigue associated with multiple sclerosis.

 Autoradiographic evaluation of electromagnetic field effects on serotonin (5HT1A) receptors in rat brain.
Johnson MT, McCullough J, Nindl G, Chamberlain JK.
Terre Haute Center for Medical Education, Indiana University School of Medicine, Terre Haute, IN 47809, USA.

Modification of osteoarthritis by pulsed electromagnetic field--a
morphological study.
Ciombor DM, Aaron RK, Wang S, Simon B.
Department of Orthopaedics, Brown Medical School, Providence, RI 02906, USA.

Safety of the magnetic field generated by a neuronal magnetic stimulator: evaluation of possible mutagenic effects.
Laboratoire PIOM (ENSCPB), Universite Bordeaux 1, 16, Avenue Pey Berland, 33607 Pessac Cedex, France.

Wien Klin Wochenschr 2002 Aug 30;114(15-16):678-84
Pulsed magnetic field therapy for osteoarthritis of the knee--a double-blind sham-controlled trial.
Department of Physical Medicine and Rehabilitation, University of Vienna, Vienna, Austria.
BACKGROUND AND METHODS: Pulsed magnetic field therapy is frequently used to treat the symptoms of osteoarthritis, although its efficacy has not been proven. We conducted a randomized, double-blind comparison of pulsed magnetic field and sham therapy in patients with symptomatic osteoarthritis of the knee. CONCLUSION: In patients with symptomatic osteoarthritis of the knee, PMF treatment can reduce impairment in activities of daily life and improve knee function.

NeuroRehabilitation 2002;17(1):63-7
Evaluation of electromagnetic fields in the treatment of pain in patients with lumbar radiculopathy or the whiplash syndrome.
Thuile Ch, Walzl M.
International Society of Energy Medicine, Vienna, Austria.

NeuroRehabilitation 2002;17(1):9-22
Physical mechanisms in neuroelectromagnetic therapies.
Liboff AR, Jenrow KA.
Department of Physics, Oakland University, Rochester, MI 48309, USA.

Electromagnetic fields for the treatment of osteoarthritis.
Hulme J, Robinson V, DeBie R, Wells G, Judd M, Tugwell P.
Cochrane Collaborating Center, Center for Global Health, Institute of Population Health - University of Ottawa, 1 Stewart Street, Ottawa, Ontario, Canada, K1N 6N5.

Brain Cogn 2002 Dec;50(3):366-86
Transcranial magnetic stimulation: Neurophysiological applications and safety.
Anand S, Hotson J.
Department of Biological Sciences, San Jose State University, One Washington Square, 95192-0100, San Jose, CA, USA.

Bioelectromagnetics 2002 Dec;23(8):578-85
Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line.
Ruiz-Gomez MJ, de la Pena L, Prieto-Barcia MI, Pastor JM, Gil L, Martinez-Morillo M.
Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Teatinos, Malaga, Spain.
Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis.
Czeh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Muller MB, Toschi N, Fuchs E, Keck ME.
The German Primate Center, Division of Neurobiology, (BC, AKF, EF), Gottingen, Germany

Mechanisms and state of the art of transcranial magnetic stimulation.
George MS, Nahas Z, Kozel FA, Li X, Denslow S, Yamanaka K, Mishory A, Foust MJ, Bohning DE.

Comparison between the analgesic and therapeutic effects of a musically modulated electromagnetic field (TAMMEF) and those of a 100 Hz electromagnetic field: blind experiment on patients suffering from cervical spondylosis or shoulder periarthritis.
Rigato M, Battisti E, Fortunato M, Giordano N.
Department of Physics, Section of Medical Physics University of Sienna, Italy

Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity.
Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany

Melatonin: reducing the toxicity and increasing the efficacy of drugs.
Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S.
University of Texas Health Science Center, Department of Cellular and Structural Biology, MC 7762, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

Combining high and low frequencies in rTMS antidepressive treatment: preliminary results.
Departments of Psychiatry I and II, Regional Hospital, 6830 Rankweil, Austria.

Effect of bioresonance therapy on antioxidant system in lymphocytes in patients with rheumatoid arthritis.
Islamov BI, Balabanova RM, Funtikov VA, Gotovskii YV, Meizerov EE.
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
Changes in the lymphocyte antioxidant system indicate that bioresonance therapy activates nonspecific protective mechanisms in patients with rheumatoid arthritis.

Pulsed magnetic field therapy for osteoarthritis of the knee--a double-blind sham-controlled trial.
Department of Physical Medicine and Rehabilitation, AKH Wien, University of Vienna, Vienna, Austria.

Altern Ther Health Med 2001 Sep-Oct;7(5):54-64, 66-9
Low-amplitude, extremely low frequency magnetic fields for the treatment of osteoarthritic knees: a double-blind clinical study.
Jacobson JI, Gorman R, Yamanashi WS, Saxena BB, Clayton L.
Institute of Theoretical Physics and Advanced Studies for Biophysical Research

JOrthop Res 2002 Sep;20(5):1106-14
Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model.
Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EY.
Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21205-2196, USA.

J Neuropsychiatry Clin Neurosci 2002 Summer;14(3):270-6
Repetitive transcranial magnetic stimulation treatment of comorbid posttraumatic stress disorder and major depression.
Rosenberg PB, Mehndiratta RB, Mehndiratta YP, Wamer A, Rosse RB, Balish M.
Mental Health Service Line, Department of Veterans Affairs Medical Center, Washington, DC 20422, USA.

Applications of transcranial magnetic stimulation in movement disorders.
Cantello R.
Department of Medical Sciences, Section of Neurology, School of Medicine, Amedeo Avogadro University, Novara, Italy.

Effects of static magnets on chronic knee pain and physical function: a double-blind study.
Hinman MR, Ford J, Heyl H.
Department of Physical Therapy, University of Texas Medical Branch, Galveston, USA.

Transcranial magnetic stimulation and its applications in children.
Lin KL, Pascual-Leone A.
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Neuropharmacology 2002 Jul;43(1):101-9
Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system.
Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.

Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders.
Hoffman RE, Cavus I.
Yale-New Haven Psychiatric Hospital, Yale University School of Medicine, LV 108, 20 York Street, New Haven, CT 06504, USA
Potential biological consequences of excessive light exposure: melatonin suppression, DNA damage, cancer and neurodegenerative diseases.
Reiter RJ.
Department of Cellular and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study.

Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts.
Diniz P, Shomura K, Soejima K, Ito G.
Department of Orthodontics, Kagoshima University Dental School, Kagoshima, Japan.

In vivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat calvarial bone.
Spadaro JA, Bergstrom WH.
Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, USA.

Nonlinear dynamics of the EEG separated by independent component analysis after sound and light stimulation.
Jin SH, Jeong J, Jeong DG, Kim DJ, Kim SY.
Department of Physics, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea.

Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson's disease: an open study.
Dragasevic N, Potrebic A, Damjanovic A, Stefanova E, Kostic VS.
Institute of Neurology Clinical Center of Serbia, Medical School, Belgrade, Yugoslavia.

Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils.
Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Ferrara, Italy.

Melatonin reduces oxidant damage and promotes mitochondrial respiration: implications for aging.
Reiter RJ, Tan DX, Manchester LC, El-Sawi MR.
Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
Future of melatonin as a therapeutic agent.
Karasek M, Reiter RJ, Cardinali DP, Pawlikowski M.
Clinic of Endocrinology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland.

Melatonin and aging.
Karasek M, Reiter RJ.
Laboratory of Electron Microscopy, Chair of Pathomorphology, Medical University of Lodz, 92-216 Lodz, Czechoslovakia 8/10, Poland.

Improved executive functioning following repetitive transcranial magnetic stimulation.
Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin ML, Robinson RG.
Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA 52240, USA.

Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: preliminary results of a randomized trial.
Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL 60612, USA.

Three and six-month outcome following courses of either ECT or rTMS in a population of severely depressed individuals--preliminary report.
Dannon PN, Dolberg OT, Schreiber S, Grunhaus L.
Psychiatry Division, ECT-TMS Unit, Chaim Sheba Medical Center, 52621 Tel Hashomer, Israel.

Sleep deprivation in depression stabilizing antidepressant effects by repetitive transcranial magnetic stimulation.
Department of Psychiatry and Psychotherapy, University of Regensburg, Germany.

Enhanced expression of neuronal nitric oxide synthase and phospholipase C-gamma1 in regenerating murine neuronal cells by pulsed electromagnetic field.
Department of Pathology, Ulsan University College of Medicine, Korea.

Transcranial magnetic stimulation (TMS) effects on testosterone,
prolactin, and corticosterone in adult male rats.
Hedges DW, Salyer DL, Higginbotham BJ, Lund TD, Hellewell JL, Ferguson D, Lephart ED.
Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA.
CONCLUSIONS: These findings 1) suggest that transcranial magnetic stimulation alters the hypothalamic-pituitary-adrenal stress axis and 2) provide time-course data for the implications of the hormonal mechanism that may be involved in the actions of transcranial magnetic stimulation.

Biol Psychiatry 2002 Mar 15;51(6):474-9
Effects of different frequencies of transcranial magnetic stimulation (TMS) on the forced swim test model of depression in rats.
Sachdev PS, McBride R, Loo C, Mitchell PM, Malhi GS, Croker V.
School of Psychiatry, University of New South Wales, and Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia.

Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis.
Burt T, Lisanby SH, Sackeim HA.
Department of Biological Psychiatry, New York State Psychiatric Institute, New York, USA

Wien Klin Wochenschr 2002 Mar 28;114(5-6):181-6
[Transcranial magnetic stimulation (TMS)--from diagnostic procedure to therapy]
[Article in German]
Quiner S, Letmaier M, Barnas C, Heiden A, Kasper S.

Arch Neurol 2002 Mar;59(3):413-7
Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study.
Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P.
Servei de Neurologia, Hospital de Sant Pau, Av Sant Antoni Ma Claret 167, 08025

Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger.
Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R.
Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78229-3900, USA.

J Fam Pract 2002 Jan;51(1):38-40 Related Articles, Links
The effectiveness of magnet therapy for treatment of wrist pain attributed to carpal tunnel syndrome.
Carter R, Aspy CB, Mold J.
Family & Preventive Medicine, 900 NE 10th St, Oklahoma City, OK 73104, USA.
We conducted a double-blind placebo-controlled randomized clinical trial in which 30 patients with pain attributed to carpal tunnel syndrome had either a 1000 gauss magnet or a placebo metal disk applied to the carpal tunnel area using a Velcro wrap for a period of 45 minutes. Pain was measured on a visual analogue scale using 0 and 10 as anchors. Presenting symptoms including numbness, tingling, burning, and pain did not differ significantly between the 2 groups.
Results: There was significant pain reduction across the 45-minute period for both
groups. However, t test comparisons found no significant differences between the groups for beginning pain, pain at 15 minutes, pain at 30 minutes, or pain at 45 minutes. Conclusion: The use of a magnet for reducing pain attributed to carpal tunnel syndrome was no more effective than use of the placebo device.

Effect of repetitive transcranial magnetic stimulation on forced swimming test.

Tsutsumi T, Fujiki M, Akiyoshi J, Horinouchi Y, Isogawa K, Hori S, Nagayama H.

Department of Neuropsychiatry, Oita Medical University, Hasama-Machi, Japan.

Pharmacol Toxicol 2002 Jan;90(1):32-7

Inhibitory effect of melatonin on homocysteine-induced lipid peroxidation in rat brain homogenates.

Osuna C, Reiter RJ, Garcia JJ, Karbownik M, Tan DX, Calvo JR, Manchester LC.

Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio 78229-3900, USA.

Rinsho Shinkeigaku 2002 Jan;42(1):35-7

[The effects of repetitive transcranial magnetic stimulation (rTMS) in the patients with Parkinson's disease]

Fukudome T, Goto H, Izumoto H, Matsuo H, Shibuya N.

Department of Neurology, Kawatana National Hospital.

Curr Med Res Opin 2001;17(3):190-6

Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study.

Pipitone N, Scott DL.

Rheumatology Department, King's College Hospital (Dulwich), London, UK.

J Tongji Med Univ 2001;21(2):159-62

A comparative study of the effects of magnetic stimulation and electric stimulation on peripheral nerve injury in rat.

Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030.

Vestn Otorinolaringol 2001;(4):10-2

[Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy]

Morenko VM, Enin IP.

Nervenarzt 2001 Dec;72(12):932-8

[Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients]

Klinik und Poliklinik fur Neurologie, Universitatsklinikum Leipzig, Liebigstrasse 22a, 04103 Leipzig.

Curr Med Res Opin 2001;17(3):190-6

Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study.

Pipitone N, Scott DL.
Rheumatology Department, King's College Hospital (Dulwich), London, UK.

J Clin Psychiatry 2001 Dec;62(12):981-4
Right versus left prefrontal transcranial magnetic stimulation for obsessive-compulsive disorder: a preliminary investigation.
Sachdev PS, McBride R, Loo CK, Mitchell PB, Malhi GS, Croker VM.
School of Psychiatry, University of New South Wales, Sydney, Australia.

Pediatr Res 2001 Dec;50(6):756-60
Effects of melatonin treatment in septic newborns.
Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.

Hawaii Med J 2001 Nov;60(11):288, 300
The use of pulsed electromagnetic fields (PEMF) in osteoarthritis (OA) of the knee preliminary report.
Danao-Camara T, Tabrah FL.
Division of Internal Medicine Subspecialities, Straub Clinic & Hospital, USA.

Transcranial magnetic stimulation in the treatment of mood disorder: a review and comparison with electroconvulsive therapy.
Hasey G.
Regional Mood Disorders Program, Department of Psychiatry, McMaster University, Hamilton, Ontario, Canada.

Psychol Med 2001 Oct;31(7):1141-6
Transcranial magnetic stimulation for depression and other psychiatric disorders.
McNamara B, Ray JL, Arthurs OJ, Boniface S.
Department of Clinical Neurophysiology, Addenbrooke's Hospital, Cambridge.

Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex.
Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP.
Services de Physiologie, Explorations Fonctionnelles, Hopital Henri Mondor, 51 avenue de Lattre de Tassigny, 94010 Creteil, France.

Vopr Kurortol Fizioter Lech Fiz Kult 2001 Sep-Oct;(5):3-8
[Theoretical and practical aspects of general magnetotherapy]
[Article in Russian]
Ulashchik VS.

Srp Arh Celok Lek 2001 Sep-Oct;129(9-10):235-8
[Effect of slow repetitive transcranial magnetic stimulation on depression in patients with Parkinson's disease]
[Article in Serbo-Croatian (Cyrillic)]
Potrebic A, Dragasevic N, Svetel M, Kostic VS.
Institute of Psychiatry, Clinical Centre of Serbia, Belgrade.

J Affect Disord 2001 Sep;66(1):83-8
The impact of repetitive transcranial magnetic stimulation on pituitary hormone levels and cortisol in healthy subjects.
Evers S, Hengst K, Pecuch PW.
Department of Neurology, University of Munster, Albert-Schweitzer-Str. 33, 48129 Munster, Germany.

J Neurol 2001 Sep;248 Suppl 3:III48-52
Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson's disease.
Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H. Shimamoto Neurosurgical Clinic, Kurume University School of Medicine, Ohnojo-city, Fukuoka, Japan.

Psychopharmacol Bull 2001 Autumn;35(4):149-69
A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression.
Holtzheimer PE 3rd, Russo J, Avery DH. Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, Harborview Medical Center, 325 Ninth Avenue, Box 359896, Seattle, WA 98104, USA.

Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms?
Post A, Keck ME. Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804 Munich, Germany.

Clin Neurophysiol 2001 Aug;112(8):1367-77
Therapeutic application of repetitive transcranial magnetic stimulation: a review.
Wassermann EM, Lisanby SH. Brain Stimulation Unit, National Institute of Neurological Disorders and Stroke, 10 Center Drive MSC 1428, Bethesda, MD 20892-1428, USA.

J Neurosci 2001 Aug 1;21(15):RC157
Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.
Strafella AP, Paus T, Barrett J, Dagher A. Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4.

Neurosci Lett 2001 May 11;303(3):165-8
Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats.

Biol Psychiatry 2001 Jul 1;50(1):22-7
Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression.
Szuba MP, O'Reardon JP, Rai AS, Snyder-Kastenberg J, Amsterdam JD, Gettes DR, Wassermann E, Evans DL. University of Pennsylvania, Department of Psychiatry, Philadelphia, Pennsylvania 19104, USA.

Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system.
Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S. Department of Cellular and Structural Biology, Mail Code 7762, The University of Texas Health Science Center At San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
Impulse magnetic-field therapy for migraine and other headaches: a double-blind, placebo-controlled study.
Pelka RB, Jaenicke C, Gruenwald J.
Universitat der Bundeswehr Munchen Munich, Germany.

Bioelectromagnetics 2001 May;22(4):267-71
Growth and differentiation of PC6 cells: the effects of pulsed electromagnetic fields (PEMF).
Shah JP, Midkiff P, Brandt PC, Sisken BF.
Center for Biomedical Engineering and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40506-0070, USA.

Percept Mot Skills 2001 Apr;92(2):469-76
Effect of magnetic insoles on postural sway measures in men and women during a static balance test.
Suomi R, Koceja DM.
School of Health, Exercise Science and Athletics, University of Wisconsin-Stevens Point 54481, USA.

Neuropsychopharmacology 2001 Apr;24(4):337-49
Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects.

Neurology 2001 Feb 27;56(4):S26-8
Enhancing analogic reasoning with rTMS over the left prefrontal cortex.
Boroojerdi B, Phipps M, Kopylev L, Wharton CM, Cohen LG, Grafman J.
Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.

Adv Ther 2001 Jan-Feb;18(1):12-20
Outcomes after posterolateral lumbar fusion with instrumentation in patients treated with adjunctive pulsed electromagnetic field stimulation.
Bose B.
Medical Center of Delaware, Newark, USA.

Srp Arh Celok Lek 2001 Jan-Feb;129(1-2):1-4
[Effect of slow repetitive transcranial magnetic stimulation on depression in patients with Parkinson disease]
[Article in Serbo-Croatian (Cyrillic)]
Potrebic A, Dragasevic N, Svetel M, Kostic VS.
Institute of Psychiatry, Clinical Centre of Serbia, Belgrade.

Ann N Y Acad Sci 2000;917:376-86
Melatonin and its relation to the immune system and inflammation.
Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX.
Department of Cellular and Structural Biology, Mail Code 7762, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

Vopr Onkol 2000;46(4):469-72
[Use of artificial magnetic field for rehabilitation of children with malignant tumors]
[Article in Russian]
Kiselev AV, Grushina TI.
N.N. Blokhin Center for Oncology Research, Russian Academy of Medical Sciences, Moscow.
Experiments showing that electromagnetic fields can be used to treat inflammatory diseases.
Terre Haute Center for Medical Education, Indiana University School of Medicine 47803, USA.

Nonlinear analysis of brain activity in magnetic influenced Parkinson patients.
Anninos PA, Adamopoulos AV, Kotini A, Tsagas N.
Dept. of Medicine, Demokrition University of Thrace, Alexandroupolis, Greece.

High frequency repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex in schizophrenic patients.
Rollnik JD, Huber TJ, Mogk H, Siggelkow S, Kropp S, Dengler R, Emrich HM, Schneider U.
Department of Neurology and Clinical Neurophysiology, Medical School of Hannover, Germany.

Influence of electromagnetic fields on the emotional behaviour of rats
Semenova TP, Medvinskaia NI, Bliskovka GI, Akoev IG.
Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia.

Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain.
Max Planck Institute of Psychiatry, Munich, Germany

Repetitive peripheral magnetic stimulation alleviates tactile extinction.
Department of Psychiatry, Technical University of Munich, Munich, Germany.

Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain.
Muller MB, Toschi N, Kresse AE, Post A, Keck ME.
Max Planck Institute of Psychiatry, Munich, Germany.

Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats.
Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.

Comparison of unlimited numbers of rapid transcranial magnetic
stimulation (rTMS) and ECT treatment sessions in major depressive episode.
Priddmore S, Bruno R, Turnier-Shea Y, Reid P, Rybak M.

A case of congenital pseudarthrosis of the tibia treated with pulsing electromagnetic fields. 17-year follow-up.
Ito H, Shirai Y, Gembun Y.
Department of Orthopaedic Surgery, Nippon Medical School, Tokyo, Japan.

Bioelectromagnetics 2000 May;21(4):272-86
Directed and enhanced neurite growth with pulsed magnetic field stimulation.
Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ.
Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.

Plast Reconstr Surg 2000 Apr;105(4):1371-4
Effects of pulsed magnetic energy on a microsurgically transferred vessel.
Roland D, Ferder M, Kothuru R, Faierman T, Strauch B.
Department of Plastic and Reconstructive Surgery at the Albert Einstein College of Medicine, Bronx, NY, USA.

Ugeskr Laeger 2000 Apr 17;162(16):2310-3
[Repetitive transcranial magnetic stimulation. A method in the treatment of depressions]
[Article in Danish]
Hansen PE.
Arhus Universitetshospital, Psykiatrisk Hospital i Arhus, Forskningsafdeling for Affektive Sygdomme.

Adv Ther 2000 Mar-Apr;17(2):57-67
Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation.
Marks RA.
Richardson Orthopaedic Surgery, Texas 75080, USA.

Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study.
Grunhaus L, Dannon PN, Schreiber S, Dolberg OH, Amiaz R, Ziv R, Lefkifker E.
Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel.

Bioelectromagnetics 2000 Feb;21(2):107-11
Effects of 100 mT time varying magnetic fields on the growth of tumors in mice.
de Seze R, Tuffet S, Moreau JM, Veyret B.
Laboratoire de Physique des Interactions Ondes-Matiere (PIOM), ENSCPB, Universite Bordeaux I, Talence, France.

Electromagnetic fields and magnets. Investigational treatment for musculoskeletal disorders.
Trock DH.
Yale University School of Medicine, New Haven, Connecticut, USA.
Effects of PEMF on a murine osteosarcoma cell line: drug-resistant (P-glycoprotein-positive) and non-resistant cells.
Miyagi N, Sato K, Rong Y, Yamamura S, Katagiri H, Kobayashi K, Iwata H. Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.

Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism.
Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM. Biological Psychiatry Branch, National Institutes of Health, Bethesda, Maryland, Psychiatry Department, University of Arkansas, Little Rock, USA.

The biological effects of magnetic stimulation in epileptic patients.
Anninos PA, Tsagas N, Jacobson JI, Kotini A. Department of Medicine, Demokration University of Thrace, Alexandroupolis, Greece.

Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo.
Post A, Muller MB, Engelmann M, Keck ME. Max Planck Institute of Psychiatry, Munich, Germany.

Treatment of migraine with pulsing electromagnetic fields: a double-blind, placebo-controlled study.
Sherman RA, Acosta NM, Robson L. Orthopedic Surgery Service, Madigan Army Medical Center, Tacoma, WA 98431, USA.

Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats.

Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold.
Triggs WJ, McCoy KJ, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau SE, Heilman KM, Goodman WK. Human Motor Physiology Laboratory, University of Florida Health Science Center, Gainesville 32610-0236, USA.

Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study.
Klein E, Kreinin I, Chistyakov A, Koren D, Mezc L, Marmur S, Ben-Shachar D, Feinsod M. Department of Psychiatry, Rambam Medical Center, Technion-Israel Institute of Technology, Haifa.
Pulsed electromagnetic fields for the treatment of bone fractures.
Satter Syed A, Islam MS, Rabbani KS, Talukder MS.
Industrial Physics Division, BCSIR Laboratories, Dhaka.

The effect of pulsed electromagnetic fields on flexor tendon healing in chickens.
Robotti E, Zimbler AG, Kenna D, Grossman JA.
Miami Children's Hospital, USA.

Safety and feasibility of repetitive transcranial magnetic stimulation in the treatment of anxious depression in pregnancy: a case report.
Nahas Z, Bohning DE, Molloy MA, Oustz JA, Risch SC, George MS.
Department of Psychiatry, Medical University of South Carolina, Charleston 29425, USA.

Electromagnetic fields influence NGF activity and levels following sciatic nerve transection.
Department of Neurology, UCSF/VAMC, San Francisco, California, USA.

Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain.
Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E.
Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine Technion, Haifa 31096,
Bellossi A, Pouvreau-Quilien V, Rocher C, Ruelloux M.
Effect of pulsed magnetic fields on triglyceride and cholesterol levels in plasma of rats.

Preliminary evidence for a beneficial effect of low-frequency, repetitive transcranial magnetic stimulation in patients with major depression and schizophrenia.
Feinsod M, Kreinin B, Chistyakov A, Klein E.
Department of Psychiatry, Rambam Medical Center, Haifa, Israel.

The effects of pulsing magnetic fields on pineal melatonin synthesis in a teleost fish (brook trout, Salvelinus fontinalis).
Lerchl A, Zachmann A, Ali MA, Reiter RJ.
Institute of Reproductive Medicine of the University, Munster, Germany.

The effect of pulsed electromagnetic field on patients with endocrine ophthalmopathy.
Jankauskiene J, Paunksnis A, Bluziene A, Saulgozis J.
Department of Ophthalmology, Kaunas Medical Academy, Lithuania.

A study of the effects of pulsed electromagnetic field therapy with respect to serological grouping in rheumatoid arthritis.
Ganguly KS, Sarkar AK, Datta AK, Rakshit A. National Institute for the Orthopaedically Handicapped (NIOH), Calcutta.

Scardino MS, Swaim SF, Sartin EA, Steiss JE, Spano JS, Hoffman CE, Coolman SL, Peppin BL. Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA.

Byers JM, Clark KF, Thompson GC. Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.

Sherman RA, Robson L, Marden LA. Service of Orthopedic Surgery, Madigan Army Medical Center, Tacoma, Wash. 98431, USA.

Darendeliler MA, Darendeliler A, Sinclair PM. Discipline of Orthodontics, Faculty of Dentistry, University of Sydney, Australia.

Am J Psychiatry 1997 Dec;154(12):1752-6 Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial.

George MS, Wassermann EM, Kimbrell TA, Little JT, Williams WE, Danielson AL, Greenberg BD, Hallett M, Post RM. Biological Psychiatry Branch, NIMH, Bethesda, MD 20892, USA.

Kirkcaldie MT, Pridmore SA, Pascau—Leone A. Department of Anatomy and Physiology, University of Tasmania, Hobart, Australia.

Lee EW, Maffulli N, Li CK, Chan KM. Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.

Darendeliler MA, Darendeliler A, Sinclair PM. Discipline of Orthodontics, Faculty of Dentistry, University of Sydney, Australia.
Medicina (B Aires) 1996;56(1):41-4
[Effect of magnetic fields on skin wound healing. Experimental study]
[Article in Spanish]
Patino O, Grana D, Bolgiani A, Prezzavento G, Merlo A.
Facultad de Medicina, Universidad del Salvador, Buenos Aires.

J Burn Care Rehabil 1996 Nov-Dec;17(6 Pt 1):528-31
Pulsed electromagnetic fields in experimental cutaneous wound healing in rats.
Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F.
Department of Postgraduate Reconstructive and Plastic Surgery,
Universidad del Salvador and Fundacion del Quemado.

Lancet 1996 Jul 27;348(9022):233-7
Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression.
Pascual-Leone A, Rubio B, Pallardo F, Catala MD.
Departamento de Fisiologia, Universidad de Valencia, Spain.

Therapy with pulsed electromagnetic fields in aseptic loosening of total hip protheses: a prospective study.
Konrad K, Sevcic K, Foldes K, Piroska E, Molnar E.
Orzagos Reumatologiai es Fizioterapias Intezet, Budapes, Hungary.

Vestn Oftalmol 1996 Jan-Mar;112(1):6-8
[Possibilities of magnetotherapy in stabilization of visual function in patients with glaucoma]
[Article in Russian]
Bisvas Shutanto Kumar, Listopadova NA.

J Burn Care Rehabil 1996 Nov-Dec;17(6 Pt 1):528-31
Pulsed electromagnetic fields in experimental cutaneous wound healing in rats.
Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F.
Department of Postgraduate Reconstructive and Plastic

Bioelectromagnetics 1995;16(5):295-300
Exposure to oscillating magnetic fields influences sensitivity to electrical stimulli. II. Experiments on humans.
Papi F, Ghione S, Rosa C, Del Seppia C, Luschi P.
Dipartimento di Scienze del Comportamento Animale e dell'Uomo,
Universita di Pisa, Italy.

Neuroreport 1995 Oct 2;6(14):1853-6
Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression.
Biological Psychiatry Branch, National Institute of Mental Health,
Charleston, SC, USA.

The influence of pulsed electrical stimulation on the wound healing of burned rat skin.
Castillo E, Sumano H, Fortoul TI, Zepeda A.
Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico, D.F.
Bioelectromagnetics 1994;15(3):205-16
Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field.
Grant G, Cadossi R, Steinberg G.
Department of Neurosurgery, Stanford University, California 94305.

Electrochemical therapy of pelvic pain: effects of pulsed electromagnetic fields (PEMF) on tissue trauma.
Jorgensen WA, Frome BM, Wallach C.
International Pain Research Institute, Los Angeles, California.

Pineal-hypothalamic tract mediation of picotesla magnetic fields in the treatment of neurological disorders.
Jacobson JI.
Institute of Theoretical Physics and Advanced Studies for Biophysical Research, Jupiter, FL

Foot Ankle Int 1994 Oct;15(10):552-6
Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields.
Holmes GB Jr.
University Orthopaedics, Rush Medical School, Chicago, Illinois.

Rheumatol 1994 Oct;21(10):1903-11
Trock DH, Bollet AJ, Markoll R.
Department of Medicine, Danbury Hospital, CT.

Rev Environ Health 1994 Apr-Jun;10(2):127-34
Pulsed magnetotherapy in Czechoslovakia--a review.
Jerabek J.
National Institute of Public Health, Praha, Czech Republic.

Neurology 1994 May;44(5):892-8
Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation.
Human Cortical Physiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.

Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields.
Walker JL, Evans JM, Resig P, Guarnieri S, Meade P, Sisken BS.
Division of Orthopaedic Surgery, University of Kentucky College of Medicine, Shriners Hospitals for Crippled Children, Lexington.

Bioelectromagnetics 1993;14(4):353-9
Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic nerve.
Kanje M, Rusovan A, Sisken B, Lundborg G.
Department of Animal Physiology, University of Lund, Sweden.

Cas Lek Cesk 1993 Oct 11;132(19):590-4
[Possible therapeutic applications of pulsed magnetic fields]
Navratil L, Hlavaty V, Landsingerova E.

Electromagnetic stimulation as a treatment of tinnitus: a pilot study.
Roland NJ, Hughes JB, Daley MB, Cook JA, Jones AS, McCormick MS.

J Cell Biochem 1993 Apr;51(4):387-93
Beneficial effects of electromagnetic fields.
Bassett CA.
Bioelectrics Research Center, Columbia University, Riverdale, New York 10463.

J Rheumatol 1993 Mar;20(3):456-60
A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis.
Trock DH, Bollet AJ, Dyer RH Jr, Fielding LP, Miner WK, Markoll R.
Department of Medicine (Rheumatology), Danbury Hospital, CT 06810.

Magnetic fields in the treatment of Parkinson's disease.
Sandyk R, Anninos PA, Tsagas N, Derpapas K.
Democritus University of Thrace, Department of Medical Physics and Polytechnic School, Alexandroupolis and Xanthi, Greece.

Age-related disruption of circadian rhythms: possible relationship to memory impairment and implications for therapy with magnetic fields.
Sandyk R, Anninos PA, Tsagas N.
Department of Psychiatry, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461.

A multivariate approach to the treatment of peripheral nerve transection injury: the role of electromagnetic field therapy.
Zienowicz RJ, Thomas BA, Kurtz WH, Orgel MG.
University of Massachusetts Medical School, Berkshire Medical Center, Pittsfield.

Vestn Oftalmol 1990 Sep-Oct;106(5):54-7
[Effectiveness of magnetotherapy in optic nerve atrophy. A preliminary study]
[Article in Russian]
Zobina LV, Orlovskaya LS, Sokov SL, Sabaeva GF, Konde LA, Iakovlev AA.

Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study.
Ieran M, Zaffuto S, Bagnacani M, Annovi M, Moratti A, Cadossi R.
Department of Medical Angiology, Arcispedale S. Maria Nuova, Reggio Emilia, Italy.

Oftalmol Zh 1990;(3):154-7
[The effect of a pulsed electromagnetic field on the hemodynamics of eyes with glaucoma]
[Article in Russian]
Tsisel'skii IuV, Kashintseva LT, Skrinnik AV.

Vestn Oftalmol 1990 Sep-Oct;106(5):54-7
Effectiveness of magnetotherapy in optic nerve atrophy. A preliminary study.

study

[Article in Russian]
Zobina LV, Orlovskaya LS, Sokov SL, Sabaeva GF, Konde LA, Iakovlev AA.

J Bone Miner Res 1990 May;5(5):437-42
Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs).
Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA.
University of Hawaii School of Medicine, Straub Clinic and Hospital, Honolulu.

Biochim Biophys Acta 1989 Jun 26;982(1):9-14
Effects of pulsed electromagnetic fields on rat skin metabolism.
De Loecker W, Delport PH, Cheng N.
Afdeling Biochemie, Katholieke Universiteit te Leuven, Belgium.

Brain Res 1989 Apr 24;485(2):309-16
Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields.
Sisken BF, Kanje M, Lundborg G, Herbst E, Kurtz W.
Center for Biomedical Engineering, University of Kentucky, Lexington 40506.

Effects of pulsed extremely-low-frequency magnetic fields on skin wounds in the rat.
Istituto di Anatomia Umana Normale, Bologna, Italy.

J UOEH 1988 Mar 1;10(1):31-45
The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats.
Mishima S.
Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.

An experimental study of the effects of pulsed electromagnetic field (Diapulse) on nerve repair.
Raji AM.

Effect of weak, pulsed electromagnetic fields on neural regeneration in the rat.
Ito H, Bassett CA.

Effects of high-peak pulsed electromagnetic field on the degeneration and regeneration of the common peroneal nerve in rats.
Raji AR, Bowden RE.